Drop-weight impact test

Fibre–polymer composites are susceptible to damage from impact events such as bird strike, dropped tools during aircraft maintenance, tarmac debris kicked-up by the wheels during take-off or landing, and large hail stones. Impact testing is performed at different impact energy levels to screen composite materials for damage resistance and damage tolerance. The most common and… Continue reading Drop-weight impact test

Fracture test

Fracture toughness is an engineering property that defines the resistance of a material against cracking. Tough materials require large amounts of energy to crack whereas low toughness materials have little resistance against cracking. For the materials used in aircraft structures, fracture toughness is just as important as other mechanical properties such as elastic modulus and… Continue reading Fracture test

Hardness test

Simply stated, hardness is the resistance of a material to permanent indentation. Hardness is not a precisely defined engineering property, such as elastic modulus or yield strength, but it is still widely used to describe the resistance of materials to plastic deformation. The hardness of ductile materials is related to their yield strength, and the… Continue reading Hardness test

Flexure test

The flexure test measures the mechanical properties of materials when subjected to bending load. A flat rectangular specimen is loaded at three or four points, as shown in Fig. 5.14. The load causes the specimen to flex, thus inducing a compressive strain on the concave side, tensile strain on the convex side, and shear along the mid-plane.… Continue reading Flexure test

Compression test

The compression test determines the mechanical properties of materials under crushing loads. There are many aircraft structures that carry compression loads, such as the undercarriage during take-off and landing or the upper wing surface during flight, and therefore the mechanical behaviour of their materials must be determined by compression testing. It is often assumed that… Continue reading Compression test

Introduction

The selection of materials for aircraft structures and engines is assessed according to a multitude of parameters such as cost, ease of manufacture, weight and a host of other factors. Central to the selection of materials is their mechanical properties such as stiffness, strength, fatigue resistance and creep performance. The durability properties of structural and… Continue reading Introduction

Defects in crystal structures

A perfect crystal structure exists when all the atoms are arranged in order through the entire material. When this occurs the metal has extraordinarily high strength. However, the crystal structure is rarely perfect, and instead contains imperfections that reduce the strength. For instance, the theoretical strength of pure aluminium is about 4600 MPa whereas the actual… Continue reading Defects in crystal structures