LINEAR SPACES

In the previous sections, we introduced vectors and matrices and defined an algebra to work on them. Now we try to gain a deeper understanding by taking a more abstract view, introducing linear spaces. To prepare for that, let us emphasize a few relevant concepts: Linear algebra is the study of linear mappings between linear… Continue reading LINEAR SPACES

Laws of matrix algebra

In this section, we summarize a few useful properties of the matrix operations we have introduced. Some have been pointed out along the way; some are trivial to check, and some would require a technical proof that we prefer to avoid. A few properties of matrix addition and multiplication that are formally identical to properties… Continue reading Laws of matrix algebra

Operations on matrices

Operations on matrices are defined much along the lines used for vectors. In the following, we will denote a generic element of a matrix by a lowercase letter with two subscripts; the first one refers to the row, and the second one refers to the column. So, element aij is the element in row i, column j. Addition Just like… Continue reading Operations on matrices

MATRIX ALGEBRA

The solution of systems of linear equations. Many issues related to systems of linear equations can be addressed by introducing a new concept, the matrix. Matrix theory plays a fundamental role in quite a few mathematical and statistical methods that are relevant for management. We have introduced vectors as one-dimensional arrangement of numbers. A matrix is, in… Continue reading MATRIX ALGEBRA

Linear combinations

The two basic operations on vectors, addition and multiplication by a scalar, can be combined at wish, resulting in a vector; this is called a linear combination of vectors. The linear combination of vectors vj with coefficients αj, Fig. 3.8 Illustrating linear combinations of vectors. j = 1, …, m is If we denote each component i, i = l, …, n, of vector j by vij, the component i of the linear… Continue reading Linear combinations

Inner products and norms

The inner product is an intuitive geometric concept that is easily introduced for vectors, and it can be used to define a vector norm. A vector norm is a function mapping a vector x into a nonnegative number  that can be interpreted as vector length. We have see that we may use the dot product to define the usual Euclidean norm: It… Continue reading Inner products and norms

Operations on vectors

We are quite used to elementary operations on numbers, such as addition, multiplication, and division. Not all of them can be sensibly extended to the vector case. Still, we will find some of them quite useful, namely: Vector addition Addition is defined for pairs of vectors having the same dimension. If , we define: For instance Since… Continue reading Operations on vectors

VECTOR ALGEBRA

Vectors are an intuitive concept that we get acquainted with in highschool mathematics. In ordinary two- and three-dimensional geometry, we deal with points on the plane or in the space. Such points are associated with coordinates in a Cartesian reference system. Coordinates may be depicted as vectors, as shown in Fig. 3.4; in physics, vectors are… Continue reading VECTOR ALGEBRA