The Structure of the Book

What Is in the Book? Chapter 1: This chapter addresses why industrial environmental management is important! Environmental management is a very crucial part of human well‐being that needs to be deeply considered. Formulated design seeks to steer the development process to take advantage of opportunities, avoid hazards, mitigate problems, and prepare people for unavoidable difficulties… Continue reading The Structure of the Book

The Challenges in Industrial Environmental Management

We need to educate and train current generation engineers, managers, business owners, and policy makers with the skills and knowledge they need to be our champion stewards of environmental management and expert on lean manufacturing of major industries demonstrating ZDZE operations. Engineers have always faced design constraints. Historically, these constraints were the laws of physics,… Continue reading The Challenges in Industrial Environmental Management

Constraints and Challenges

The implementation of Zero Emissions faces constraints and challenges, as well as new opportunities. For example, the use of dissipative materials poses a design challenge: If solvents and flocculants are no longer to be used, what would it be replaced? Chemical manufacturers need to work with design engineers to arrive at an understanding of the… Continue reading Constraints and Challenges

MINI‐CASE STUDY 1.3 RECOVERY OF WASTES FROM PALM OIL EXTRACTION YIELDS HIGH RETURN ON INVESTMENT

Recovery of wastes from agro‐industries is an extremely promising aspect of Zero Emissions. This project focuses on recovering all of the solid, liquid, gaseous, and thermal wastes from the Golden Hope Plantation in Malaysia, the largest oil palm plantation in the world. With the commitment of Meta Epsi, a large engineering group with substantial interests… Continue reading MINI‐CASE STUDY 1.3 RECOVERY OF WASTES FROM PALM OIL EXTRACTION YIELDS HIGH RETURN ON INVESTMENT

In the Full ZD (Emission) Paradigm

Designing ZD systems requires an expansion of the focus and outputs of the traditional design engineer. Concurrent engineers need to incorporate design for the environment. Industrial engineers need to think in terms of industrial clusters. Environmental engineers need to understand upstream processes better so that they can develop designer wastes. Environmental engineers also need to… Continue reading In the Full ZD (Emission) Paradigm

System Design

DaimlerChrysler put in operation ZLD systems of two kinds. The first uses reverse osmosis (RO) to produce a concentrate of total dissolved solids (TDS), which is sent to a large evaporator and eventually on to a lagoon or solar evaporator pond. Used in dry, arid areas of low elevation, this system is frequently found in… Continue reading System Design

Improved Processes

Consultants can help managers cut costs and create new values by instituting real‐time monitoring and eliminating inefficiencies in the use of resources all along a product’s life cycle. These inefficiencies include incomplete utilization of material and energy resources, poor process controls, product defects, waste storage costs, discarded packaging, costs passed on to consumers for pollution… Continue reading Improved Processes

New Technologies and Materials

During transitional stages, existing industries can be identified as potential members of a cluster if minimal design engineering can make them compatible and most of the transfers of materials are occurring in a more basic commodity form, rather than as “designer wastes.” Once Zero Emissions has been incorporated at the drawing board level, facilities can… Continue reading New Technologies and Materials

Dematerilization

One critical component of the industrial ecology paradigm is dematerialization. Dematerialization means using less material to make products that perform the same function as predecessors. Sometimes this means smaller or lighter products, but other aspects can include increasing the lifetime of a product or its efficiency. The net effect is a reduction in overall resource… Continue reading Dematerilization